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Abstract—We outline a model of computing with high-
dimensional (HD) vectors — where the dimensionality is in the
thousands. It is built on ideas from traditional (symbolic) com-
puting and artificial neural nets/deep learning, and complements
them with ideas from probability theory, statistics and abstract
algebra. Key properties of HD computing include a well-defined
set of arithmetic operations on vectors, generality, scalability,
robustness, fast learning, and ubiquitous parallel operation,
making it possible to develop efficient algorithms for large-scale
real-world tasks. We present a 2D architecture and demonstrate
its functionality with examples from text analysis, pattern recog-
nition, and biosignal processing, while achieving high levels of
classification accuracy (close to or above conventional machine-
learning methods), energy efficiency, and robustness with simple
algorithms that learn fast. HD computing is ideally suited for 3D
nanometer circuit technology, vastly increasing circuit density
and energy efficiency, and paving a way to systems capable of
advanced cognitive tasks.

Index Terms—Alternative computing, Bio-inspired computing,
Hyperdimensional computing, Vector Symbolic Architectures, In-
memory computing, 3D RRAM, Pattern recognition.

I. INTRODUCTION

Over the past six decades, the semiconductor industry
has been immensely successful in providing exponentially
increasing computational power at an ever-reducing cost and
energy footprint. Underlying this staggering evolution is a
set of well-defined abstraction layers: starting from robust
switching devices that support a deterministic Boolean al-
gebra, to a scalable and stored program architecture that
is Turing complete and hence capable of tackling (almost)
any computational challenge. Unfortunately, this abstraction
chain is being challenged as scaling continues to nanometer
dimensions, as well as by exciting new applications that must
support a myriad of new data types. Maintaining the current
deterministic computational model ultimately puts a lower
bound on the energy scaling that can be obtained, set in place
by fundamental physics that governs the operation, variability
and reliability of the underlying nanoscale devices [1]. These
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pose a computational challenge for the Internet of Things (IoT)
that require massive amounts of local processing [2].

At the same time, it is clear that the nature of computing
itself is evolving rapidly. For a vast number of IoT applica-
tions, cognitive functions such as classification, recognition,
synthesis, decision-making, and learning are rapidly gaining
importance in a world that is infused with sensing modalities
and in need of efficient information-extraction. This is in sharp
contrast to the past when the central objective of computing
was to perform calculations on numbers and produce results
with extreme numerical accuracy.

Indeed, the recent success of deep-learning networks —
based on the artificial neural networks of the past — is based
on finding ever expanding applications from speech and image
recognition, to predicting the effects of mutations in noncoding
DNA on gene expression and disease. While these success
stories foretell an intriguing future for learning machines, the
current reality is that these approaches need to run a large
cluster of modern computers for several days in order to
perform the required computations. In doing so, they also
consume gigantic amounts of energy. Thus, the combination
of the digital computer and deep-learning algorithms, while
very important as a proof of concept, is neither realistic nor
scalable for the broad societal adoption. Therefore, realizing
the full potential of learning machines requires significant
improvement in every aspect of the hierarchy of computers.

Conventional deep-learning algorithms require brute force
tuning of millions of parameters over repetitive iterations at
every layer of a several-layer stack. As a result, learning is
slow and power hungry — every weight change during the
training expends energy. Shuttling data through these networks
during testing/production is also power hungry. Currently,
there are no guarantees regarding the optimality or efficiency
of operations in these networks. It is, therefore, essential to
find new algorithms which are capable of “online” or one-shot
learning, and for which there exist computational theories that
bound the consumption of resources and the computational
complexity for a given task; see Section At the same
time, significant technological advances are required to create
new physical devices that will form the building blocks of
future learning machines, so that the energy costs can be
substantially lowered. To achieve optimum energy usage, these
devices must be integrated and organized in efficient architec-
tures that are tuned to the intricacies of the corresponding
learning algorithms. In order to continue miniaturization of
the component base, new architectures will need to utilize
the“intrinsic” properties of the underlying nano-devices, such
as embracing nanoscale device variability to meet application



needs instead of paying high energy costs to avoid variability.

Finally, we are challenged positively by biology. Brains
receive a steady stream of input from hundreds of millions
of sensory neurons, process it with neurons that are stochastic
and slow (10-to-100 Hz compared to computer circuits op-
erating at speeds a million times faster), consume very little
energy (roughly equivalent to a laptop computer), and produce
behavior unparalleled by computers. To allow us to function in
the world, our brains extract information from vast quantities
of noisy data.

What brains have in their favor are numbers. The hu-
man cerebellum alone, with its wiring resembling computer
RAM’s, has on the order of 3 trillion modifiable synapses. If
learning were nothing more than the setting up a lookup table
and if a synapse were the equivalent of one bit, the cerebellum
could store 10 million bytes of data per day for 100 years, or
about a thousand bits per second, day and night. There must
be models of computing rather different from the present and
more akin to brains, that benefit from such large numbers and
cope with a profusion of real-world data in real time.

Recognizing these needs, we propose an energy-efficient
designs for a theory of high-dimensional computing (HD com-
puting), also referred to as “hyperdimensional” on account of a
dimensionality that is in the thousands [3]. In this formalism,
information is represented in ultra high-dimensional vectors
(hypervectors). Such hypervectors can then be mathematically
manipulated to not only classify but also to make associations,
form hierarchies, and perform other types of cognitive com-
putations. In addition, the set of mathematical operations on
hypervectors enables capabilities beyond deep neural networks
such as one-shot learning and short-term (working) memory.
Thus, HD computing can substantially reduce the number of
operations needed to perform cognitive functions compared
to conventional deep-learning algorithms, thereby providing
tremendous energy savings.

This article presents an overview of the HD computing
paradigm and its application in several computational tasks.
We outline its implementation in large arrays of nonvolatile
memory. Nonvolatile memory such as Resistive RAM can be
integrated at high density with logic switches. Integrating in
3D will allow in-memory execution of all the required HD vec-
tor operations, resulting in significant energy savings as there
is no need to shuttle data back and forth between processing
and memory units. Combined with the unique properties of
HD computing, we expect to see learning machines that are
orders of magnitude more efficient than the ones in use today.

This paper is organized as follows. In Section we
introduce HD computing and discuss its key properties. In
Section we present a 2D hardware architecture for HD
computing and describes how its arithmetical operations can be
used to solve a classification problem. Our experimental results
for the 2D architecture regarding robustness, energy efficiency
and information capacity are described in Section In
Section [V] and Section we project a 3D architecture and
potential algorithms and application drivers for HD computing,
and conclude in Section

II. HIGH-DIMENSIONAL COMPUTING

The difference between traditional computing and high-
dimensional computing is apparent in the elements that the

computer computes with. In traditional computing the ele-
ments are Booleans, numbers, and memory pointers. In HD
computing they are multicomponent vectors, or tuples, where
neither individual component nor a subset thereof has a
specific meaning: a component of a vector and the entire vector
represent the same thing. Furthermore, the vectors are wide:
the number of components is in the thousands.

We will demonstrate the idea with a simple example from
language [4]. The task is to identify the language of a
sentence from its three-letter sequences called trigrams. We
compare the trigram profile of the sentence to the trigram
profiles of 21 languages and chose the language with the most
similar profile. A profile is essentially a histogram of trigram
frequencies in the text in question.

The standard algorithm for computing the profile — the
baseline — scans through the text and counts the trigrams.
The Latin alphabet of 26 letters and the space give rise to
273 = 19,683 possible trigrams, and so we can accumulate the
trigram counts into a 19,683-dimensional vector and compare
such vectors to find the language with the most similar profile.
This is straightforward and simple with trigrams but it gets
complicated with higher-order n-grams when the number
of possible n-grams grows into the millions (the number
of possible pentagrams is 27° = 14,348,907). The standard
algorithm generalizes poorly.

The HD algorithm starts by choosing a set of 27 letter
vectors at random. They serve as seed vectors, and the same
seeds are used with all training and test data. We have used
10,000-dimensional vectors of equally probable 1s and —1s
as seeds. From these we make trigram vectors by rotating
the first letter vector twice, the second letter vector once, and
use the third letter vector as is, and then by multiplying the
three vectors component by component. Such trigram vectors
resemble the seed vectors in that they are 10,000-D with
equally probable 1s and —1s, and they are random relative
to each other. A text’s profile is then the sum of all the
trigrams in the text: for each occurrence of a trigram in the
text, we add its vector into the profile vector. The profile of
a test sentence is then compared to the language profiles and
the most similar one is returned as the system’s answer, as
above. In contrast to the standard algorithm, the HD algorithm
generalizes readily to any n-gram size — the HD vectors remain
10,000-D. This example will be analyzed further in Section III
on 2D Architecture for HD Computing.

A. Distributed Representations and Arithmetic Operations on
Hypervectors

HD computing is based on the properties of high-
dimensional vectors and operations on them. We will review
them with reference to D-bit vectors, where D = 10,000 for
example. There are 20 guch vectors, also called points, and
they correspond to the corners of a D-dimensional unit cube.
The number of places at which two binary vectors differ
is called the Hamming distance and it provides a measure
of similarity between vectors. A peculiar property of high-
dimensional spaces is that most points are relatively far from
any given point. Hence two D-bit vectors chosen at random
are dissimilar with near certainty: when referenced from the
center of the cube they are nearly orthogonal to each other.



X=10010 01 X and A are bound with XOR
A=00111 11
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Fig. 1. An example of encoding and decoding of a data structure using HD
computing.

HD computing uses three operations [3]]: addition (which
can be weighted), multiplication, and permutation (more gen-
erally, multiplication by a matrix). “Addition” and “multiplica-
tion” are meant in the abstract algebra sense where the sum of
binary vectors [A + B +...] is defined as the componentwise
majority with ties broken at random, the product is defined as
the componentwise Exclusive-Or (addition modulo 2, &), and
permutation (p) shuffles the components. All these operations
produce a D-bit vector.

The usefulness of HD computing comes from the nature of
the operations. Specifically, addition produces a vector that
is similar to the argument vectors — the inputs — whereas
multiplication and random permutation produce a dissimilar
vector; multiplication and permutation are invertible, addition
is approximately invertible; multiplication distributes over
addition; permutation distributes over both multiplication and
addition; multiplication and permutation preserve similarity,
meaning that two similar vectors are mapped to equally similar
vectors elsewhere in the space.

Operations on HD vector can produce results that are
approximate or ‘“noisy” and need to be identified with the
exact vectors. For that, we maintain a list of known (noise-
free) seed vectors, called item memory or clean-up memory.
When presented with a noisy vector, the item memory outputs
the most similar stored vector. High dimensionality is crucial
to make that work reliably. With 10,000-bit vectors, 1/3 of the
bits can be flipped at random and the resulting vector can still
be identified with the original stored one.

The operations make it possible to encode and manipulate

sets, sequences and lists — in essence, any data structure.
Figure 1 shows how a data record consisting of variables
x,y,z with values a, b, c can be encoded into a hypervector
H and the value of z can be extracted from it. We start
with randomly chosen seed vectors X,Y, Z, A, B, C for the
variable and the values and store them in the item memory.
We then encode the record by binding the variables to their
values with multiplication and by adding together the bound
pairs:
H=[(XaeA)+ Y aeB)+ (ZaC)

To find the value of  in H we multiply it with the inverse
of X, which for XOR is X itself: A’ = X & H. The resulting
vector A’ is given to the item memory which returns A as the
most-similar stored vector. An analysis of this example would
show how the properties of the operations, as listed above,
come to play. A thing to note about the operations is that
addition and multiplication approximate an algebraic structure
called a field, to which permutation gives further expressive
power.

HD computing has been described above in terms of
binary hypervectors (the bipolar vectors of the first ex-
ample are equivalent to the binary). However, the key
properties are shared by high-dimensional vectors of many
kinds, all of which can serve as the computational infras-
tructure. They include Holographic Reduced Representations
(HRR) [3], frequency domain Holographic Reduced Rep-
resentations (FHRR) [5], Binary Spatter Codes (BSC) [6],
Multiply-Add-Permute (MAP) architecture [7], Binary Sparse
Distributed Codes (BSDC) [8]], Matrix Binding of Additive
Terms (MBAT) [9]], and Geometric Analogue of Holographic
Reduced Representations (GAHRR) [[10]. Different represen-
tational schemes using high-dimensional vectors and opera-
tions on them are generally referred to as Vector Symbolic
Architectures (VSA) [11] and the ultrahigh dimensionality
is referred to as Hyperdimensional [3]. Table [ summarizes
different frameworks of VSAs.

B. General and Scalable Model of Computing

HD computing is a complete computational paradigm that is
easily applied to learning problems. Its main difference from
other paradigms is that it can operate with data represented
as approximate patterns, allowing it to scale to large learning
applications.

1) Applications of HD Computing: HD computing has been
used commercially since 2008 for making semantic vectors
for words — semantic vectors have the property that words
with similar meaning are represented by similar vectors. The
Random Indexing (RI) [13] algorithm for making semantic
vectors was developed as an alternative to Latent Semantic
Analysis (LSA) [14], which relies on compute-heavy Singular
Value Decomposition (SVD). The original experiment used
37,000 “documents” on 7 topics to compute 8,000-dimensional
semantic vectors of equal quality for 54,000 words. SDV-
based LSA requires memory in proportion to the product:
‘size of vocabulary’ x ‘number of documents’. By contrast, RI
requires memory in proportion to the size of the vocabulary,
and the statistics of documents/contexts is learned through
simple vector addition [13]]. Thus, the complexity of the



TABLE I
SUMMARY OF HD COMPUTING FRAMEWORKS. EACH FRAMEWORK HAS ITS OWN SET OF SYMBOLS AND OPERATIONS ON THEM FOR ADDITION,
MULTIPLICATION, PERMUTATION, AND A MEASURE OF SIMILARITY.

VSAs Ref. Symbol Set Multiplication Addition Permutation Similarity metric

BSC 6] dense binary vectors elementwise XOR majority function rotation Hamming

MAP ] dense bipolar vectors elementwise multiplication  elementwise addition rotation cosine

HRR [12]  unit vectors circular convolution elementwise addition none dot product

FHRR 151 complex unitary vectors elementwise multiplication  angle of sum circular convolution — cosine

MBAT 19] dense bipolar vectors vector-matrix multiplication elementwise addition multiple binding dot product

BSDC 131 sparse binary vectors context-dependent thinning  elementwise disjunction rotation overlap of vectors

GAHRR [10] unit vectors geometric product elementwise addition none unitary-space scalar product
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Fig. 2. General and scalable HD computing for various cognitive tasks: (a)
European languages recognition; (b) EMG-based hand gesture recognition.

method grows linearly with the size of the training corpus
and scales easily to millions of documents.

Multiplication and permutation make it possible to encode
causal relations and grammar into these hypervectors, thereby
capturing more and more of the meaning in language [4]], [15].
We have also used HD computing successfully to identify the
language of test sentences, as described at the start of this sec-
tion [4]], [[L6], and to categorize text [17]; other applications to
text include common substrings search [[18] and recognition of
permuted words [19]. Using analog accelerometer signals, the
feasibility for classifying vehicles was demonstrated in [20].
While these applications have a single input stream (Fig-
ure [2(a)), processing of biosignals from multiple sensors (Fig-
ure 2(b)) can also benefit from HD computing. For instance,
we have adapted the architecture for text analytics to the
classification of hand gestures, when analog electromyography
(EMG) signals are recorded simultaneously by four sensors, as
shown in Figure E] (81=S4) [21]]. This architecture was further
extended to operate on electroencephalography (EEG) data
with 64 electrodes for a binary classification task [22].

2) Comparison with Conventional Machine Learning:
Table lists applications of HD computing to classifica-
tion and recognition. It also compares the accuracy between
HD computing and a baseline conventional machine learning

methods as reported in the literature. For language identifi-
cation, k Nearest Neighbor (k-NN) was considered as the
baseline [16]. Text categorization was compared to various
methods including Bayes, k-NN, and Support Vector Machine
(SVM) in which SVM was the most accurate [23]. In EMG-
based hand-gesture recognition, SVM was used as the standard
of comparison [24]. For binary classification of EEG error-
related potentials a Gaussian classifier was crafted by a skilled
professional [22].

HD computing has also been used for fusing data streams
from multiple sources, including categorization of bodily
physical activities [25], and prediction of mobile-phone use
patterns [26]. In [25] the principles of HD computing were
applied to human activity recognition using data from several
heterogeneous sensors, and the results were compared to
ones obtained by combining Decision Trees (DT) and Arti-
ficial Neural Network (ANN). Similar encoding scheme was
used in [26] for predicting behavior of mobile-device users
(e.g., media player prediction) and compared to results from
a mixed-order Markov model (MOMM). In [27] HRR-like
representations were formed directly from the features using
random projection matrices; such representational scheme was
found to be efficient for the task of spoken-word classification
demonstrating performance comparable to Gaussian mixture-
based continuous-density hidden Markov model (HMM).

In [28] the authors proposed an encoding scheme using a
Binary Spatter Code for forming distributed representations
of arbitrary patters. In the test task of recognizing black-
and-white images in the presence of noise, the scheme has
shown improved performance compared to the Hierarchical
Graph Neuron (HGN) which uses the same abstraction when
representing patterns. The same scheme was also applied to
the problem of data-driven fault isolation in an industrial plant
in [29]. For language identification, HD computing was almost
as accurate as the baseline, and for the other applications
it surpasses the baseline methods. In every case the HD
algorithm is as simple or simpler than the traditional algorithm.

Note that all aforementioned operations — multiplication,
addition, permutation, distance measuring — are performed on
hypervectors that can represent arbitrary patterns. The patterns
can be approximate, and so the results will be approximate.
The inherent robustness of high-dimensional distributed rep-
resentation allows multiple alternatives to be superposed over
the same vector and processed as a single unit. The ability
to robustly compute with approximate patterns underlies the
amenability and scalability of HD computing for a variety of



TABLE II
COMPARISON OF CLASSIFICATION ACCURACY BETWEEN HD COMPUTING
AND CONVENTIONAL MACHINE LEARNING

Applications Encoding | HD Baseline
Language identification n-gram 96.7% k-NN, 97.9%
Text categorization n-gram 94.2% SVM, 86.4%
EMG gesture recognition n-gram 97.8% SVM, 89.7%
EEG error-related potentials | n-gram 74.5% Gaussian, 69.5%
Activity recognition sequence | 82.2% DT&ANN, 75.4%
Spoken-word classification features 97.2% HMM, 97.1%
Media-player prediction sequence | 36.0% MOMM, 32.0%
Image classification pixels 98.3% HGN, 76.2%
Fault isolation features 68.0% k-NN, 71.0%
Vehicle classification features 100.0% | none

cognitive applications.

C. Robustness of Computations

HD computing is extremely robust. Its tolerance for low-
precision components (see Section and faulty compo-
nents (see Section [[V-E) is achieved by bio-inspired properties
of hypervectors: (pseudo)randomness, high-dimensionality,
and fully distributed holographic representations. Symbols
represented with hypervectors begin with i.i.d. components
and when combined with the Multiply-Add-Permute (MAP)
operations, the resulting hypervectors also appear as identi-
cally distributed random vectors, and the independence of the
individual components is mostly preserved. This means that
a failure in a component of a hypervectors is not “conta-
gious”. At the same time, failures in a subset of components
are compensated for by the holographic nature of the data
representation i.e., the error-free components can still provide
a useful representation that is similar enough to the original
hypervector. This inherent robustness eliminates the need for
asymmetric error protection in memory units. This makes HD
data representation suited for operation at low signal-to-noise
ratios (SNR).

D. Fast and Continuous Learning

In contrast to other neuro-inspired approaches in which
learning is computationally much more demanding than sub-
sequent classification, learning in HD computing is based
on the same algorithms as classification. The HD algorithms
are relatively lightweight and can be realized in low-energy
devices. The algorithms work in “one-shot,” namely, object
categories are learned in a single pass over the training
data. As an example, HD algorithm achieved a high level
of classification accuracy (97.8%) in one pass over 1/3 the
training data required by the state-of-the-art Support Vector
Machine (SVM) on the same task [21]].

Furthermore, the same representational scheme can be used
for a variety of tasks with similar success rates. Because
all are based on the same set of operations (add, multiply,
permute, compare), it is possible to build a general-purpose
computational engine for all these tasks. In addition, since the
same algorithms are used for learning and classification, the
architecture is ideal for continuous on-line learning.

E. Memory-centric with Embarrassingly Parallel Operation

At its very core, HD computing is about manipulating and
comparing large patterns within the memory itself. The MAP
operations allow a high degree of parallelism by needing to
communicate with only a local component or its immediate
neighbors. Other operations such as the distance computation
can be performed in a distributed fashion. This is a funda-
mental difference from traditional computational architectures,
where data has to be transported to the processing unit and
back, creating the infamous memory wall. In HD processing,
logic is tightly integrated with the memory and all compu-
tations are fully distributed. This translates into substantial
energy savings, as global interconnects are accessed at a
relatively low frequency.

HD computing, therefore, has high application potential
with novel memory-centric designs such as Intel-Micron 3D
XPoint, Samsung In-Memory Database, and Altera Stratix
10 MX DRAM system-in-package that can be integrated at
high density with programmable logic blocks. For example,
the Stratix 10 MX DRAM system-in-package [30] meets the
demanding memory bandwidth requirement by combining a
high-performance monolithic FPGA fabric and high bandwidth
memory modules, all in a single package.

III. 2D ARCHITECTURE FOR HD COMPUTING

As a concrete application of HD computing, let us look
at an implementation of the language-recognition algorithm
discussed in Section II, except that instead of bipolar vectors
({1, —1}") we will use the Binary Spatter Code [16]. The
HD classifier generates trigram profiles as hypervectors and
compares them for similarity. As shown in Figure [3] the
design is based on a memory-centric architecture where logic
is tightly integrated with the memory and all computations are
fully distributed. The HD classifier has two main modules:
encoding and similarity search. The encoding module projects
an input text, composed of a stream of letters, to a hypervector
in high-dimensional space. Then this hypervector is broadcast
to the similarity-search module for comparison with a set
of precomputed language hypervectors. Finally, the search
module returns the language that has the closest match based
on Hamming distance similarity.

A. Encoding Module

The encoding module accepts the text as a stream of
letters and computes its representation as a hypervector. The
module has an item memory that holds a random hypervector
(the “letter” hypervector) for each of the 26 letters and the
space. The item memory is implemented as a lookup table
that remains constant. In the binary implementation of the
encoding module, a letter hypervector has an approximately
equal number of randomly placed 1s and Os, and the 27 vectors
are approximately orthogonal to each other.

The encoding module computes a hypervector for each
block of 3 consecutive letters as the text streams in. It consists
of 3 stages in FIFO style, each of which stores a letter
hypervector. A trigram hypervector is created by successively
permuting the letter vectors based on their order and binding
them together, which creates a unique representation for each
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Fig. 3. HD classifier a 2D architecture for HD computing: encoding module and search module.

unique sequence of three letters. For example, the trigram
“abc” is represented by the hypervector p(p(A) & B) ® C =
p(p(A)) @ p(B) @ C. Use of permutation and binding dis-
tinguishes the sequence “abc” from “acb”, since a permuted
hypervector is uncorrelated with all the other hypervectors.

The random permutation operation p is fixed and is imple-
mented as a rotation to right by 1 position as shown in Fig-
ure [3] For instance, given the trigram “abc”, the A hypervector
is rotated twice (p(p(A))), the B hypervector is rotated once
(p(B)), and there is no rotation for the C' hypervector. Once
“c” is reached, its corresponding C' hypervector is fetched from
the item memory and is written directly to the first stage of
the encoder (i.e., Letters hypervector in Figure [3). The two
previous letters are rotated as they pass through the encoder
and turn into pp(A) and p(B). Componentwise bindings are
then applied between these three hypervectors to compute the
trigram hypervector, i.e., pp(A)® p(B) @ C. Since the trigram
hypervector is binary, the binding between two hypervectors
is implemented with D XOR gates.

The hypervector for the input text is computed by adding
together the hypervectors for all the trigrams in the text and by
applying a threshold. An input text of length k + 2 generates
k trigram vectors. We implement the componentwise addition
with a set of D accumulators (ACC in Figure @) one for each
dimension of the hypervector, and count the number of Is in
that component location. This componentwise accumulation
produces a D-dimensional vector of integers. To compute the
corresponding binary vector, the encoding module applies a
threshold of k/2 (implementing the majority function (k, k/2))
to every accumulator value, where & is the number of trigrams
accumulated from the input. Left side of Figure 3]shows such a
dedicated accumulation and thresholding for every hypervector
component. The output of the encoding module is the binary
text hypervector.

The encoding module is used for both training and testing.
During training when the language of the input text in known,
we refer to the text hypervector as a language hypervector.
Such language hypervectors are stored in the search module.

When the language of a text is unknown, as it is during testing,
we call the text hypervector a query hypervector. The query
hypervector is sent to the similarity search module to identify
its source language.

B. Similarity-Search Module

The search module stores a set of language hypervectors
that are precomputed by the encoding module. These language
hypervectors are formed in exactly the same way as described
above, by making the text hypervectors from samples of a
known language. Therefore, during the training phase, we feed
texts of a known language to the encoding module and save
the resulting text hypervector as a language hypervector in the
search module. We consider 21 European languages and at the
end of training have 21 language hypervectors, each stored in
its own row of the search module.

The language of an unknown text is determined by com-
paring its query hypervector to all the language hypervectors.
This comparison is done in a distributed fashion using an
associative memory, and with the Hamming distance as the
similarity function.

Hamming distance counts the number of components at
which two binary vectors disagree. The module uses a set of D
XOR gates to identify mismatches between the two hypervec-
tors. To ensure scalability, the similarity-measurement block
compares only one component each clock cycle. Hence, it
takes O(D) cycles to compute the Hamming distance between
the two hypervectors. This block is replicated 21 times (the
number of languages in our application) within the search
module as shown in Figure [3] The query hypervector is
broadcast across the search module, hence all the similarity-
measurement blocks compute their distance concurrently. Fi-
nally, a combinational comparison block selects the minimum
Hamming distance and returns its associated language as the
language that the unknown text has been written in.



IV. EXPERIMENTAL RESULTS

In this section, we present our experimental results for
the HD classifier as a 2D architecture. We first present our
application of language recognition and its dataset. Next,
we describe a conventional machine learning method as a
baseline for comparison with the HD classifier. We provide
RTL implementations for these two classifiers and compare
their classification accuracy, memory footprints, energy con-
sumption and robustness.

A. Language Recognition Dataset

We consider an application for recognition of 21 European
languages, discussed in Section II. The sample texts are taken
from the Wortschatz Corpora [31] where large numbers of sen-
tences in these languages are available. We train each language
hypervector based on about a million bytes of text. To test the
ability of identifying the language of unseen text samples, we
select test sentences from Europarl Parallel Corpus [32] as an
independent text source. This corpus provides 1,000 samples
of each language, and each sample is a single sentence, for
a total of 21,000 sentences. The accuracy recognition metric
used throughout this paper is the percentage of sentences
identified correctly.

B. Baseline Machine Learning Method

As the baseline technique, we choose a nearest neighbor
classifier that uses histograms of n-grams. To compute the dis-
tance between histograms, the dot product is used. A histogram
is generated for each language to capture the frequency of n-
grams in the training data. Hence, the outcome of the training
phase is a set of 21 histograms that represent the languages.
The histogram for each test sentence is generated in the same
way. To find out the language of the test sentence, we compute
the dot product of its histogram with the 21 precomputed his-
tograms. The highest dot product score identifies the language
that the test sentence is written in. Considering n-grams as the
input features, a histogram requires L™ integer components
where L is 27 in our application. To reduce the memory
footprint, we convert the integer components of histograms
to binary using their mean value as the threshold.

The nearest neighbor among histograms was chosen for two
reasons. First, the histogram has full information about the n-
gram statistics, so it sets the highest standard of comparison.
Second, from a hardware point of view, nearest neighbor is
equally suited for the HD algorithm. Both use n-grams of
letters, and the operations have equal complexity. For instance,
computing the frequency of an n-gram in the baseline is
a lookup action followed by addition. For finding the best
match, both use dot product to measure distance, and use the
Hamming distance when the histograms are reduced to binary.
Essentially, this baseline uses the same hardware components
as the HD architecture but excludes the item memory. In the
following sections we compare the methods in detail.

C. Classification Accuracy and Memory Usage

Table [lII] compares the two classifiers when the histograms
have been reduced to binary. The first two columns show
the classification accuracy with different n-grams and the last

98.0%

97.5%

§97.o%
3 96.5%
©

5 96.0%

S 95.5%
o

[*3

& 95.0%
94.5%
94.0%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Hypervector bitwidth

Fig. 4. Recognition accuracy while varying the component bitwidth of 10,000-
dimensional hypervectors.

two columns show the memory footprint. With histograms
based on bigrams, the baseline has 2.3% lower recognition
accuracy than the HD classifier. However, using n-grams with
n > 3, the baseline is slightly more accurate. For example,
the baseline shows 97.9% recognition while the HD classifier
shows 96.7% for trigrams. In this case, the HD classifier
requires 1.2x as many memory cells as the baseline. On the
upside, the HD classifier is able to represent many more n-
grams within the same hardware structure. It scales very well:
for instance, by moving from trigrams (n = 3) to pentagrams
(n = 5), the HD classifier must add memory cells for only
2 extra hypervectors (in the encoding module) whereas the
memory required by the baseline grows exponentially with n.
Using pentagrams of letters, the baseline shows an accuracy
of 99.8% (4.8% higher than the HD classifier), at the expense
of 500x larger memory size. Of course the exact counts of
all pentagrams that appear in a million bytes of text can be
captured in much less memory than that but the algorithm is
no longer as simple.

D. Robustness in the Presence of Low-Precision Components

Here we assess the robustness of HD classifier in language
recognition by replacing high-precision components with low-
precision ones, down to binary, in the search module (see
Section and Figure [3).

Each component of the text hypervector requires a multibit
cell memory before thresholding. For learning a megabyte of
text, each hypervector component will need 19 bits precision
for summing up a million of random Os and 1s. Figure @
shows the accuracy of language recognition as a function
of bitwidth of the hypervector components. As shown, the
recognition accuracy is slightly decreased by reducing the
bitwidth (i.e., the precision of each component). Such a robust
behavior enables us to turn the high-precision hypervectors to
binary hypervectors of the same dimensionality, while slightly

TABLE III
CLASSIFICATION ACCURACY AND MEMORY FOOTPRINT OF THE HD
CLASSIFIER AND BASELINE CLASSIFIERS.

Accuracy Memory (Kb)
HD Baseline | HD | Baseline
Bigrams (n=2) 932% | 90.9% 670 | 39
Trigrams (n=3) 96.7% | 97.9% 680 | 532
Tetragrams (n=4) | 97.1% | 99.2% 690 | 13837
Pentagrams (n=5) | 95.0% | 99.8% 700 | 373092
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degrading the recognition accuracy from 97.4% to 96.7%.
Reducing bitwidth reduces the amount of memory required by
the search module by a factor of 19x. Moreover, comparing
binary hypervectors requires fewer hardware resources in the
search module.

E. Robustness Against Memory Errors

Here we assess the classifiers’ tolerance for memory errors.
We target RTL fault simulations where we inject memory bit
flips during every clock cycle of execution. We consider a
wide range of probability of failures for each memory cell;
the fault simulations cover all the memory elements in both
designs.

Figure [5] shows recognition accuracy with erroneous mem-
ory cells; the X-axis displays the probability of failure for
each memory cell in every clock cycle. The baseline is able
to maintain its high accuracy of 97% using faulty memory cells
with the probability of failure at 3.16E-08 and lower values. At
3.17E-08 the accuracy falls sharply to below 46%. However,
the HD classifier is very robust: it maintains recognition
accuracy of 94% and higher for probability of failure up to
2.78E-07. At or near peek performance (94% for the HD
classifier and 97% for the baseline), the HD classifier tolerates
8.8-fold probability of failure compared to the baseline. By
further increasing the probability of failure by 2.8, to 7.69E-
07, the HD classifier is still 80% accurate or better. Finally, the
accuracy of the HD classifier drops to 43% when the memory
cells fail with probability 4.00E-06, i.e., =~120x higher than
the failure rate that the baseline could tolerate for the same
accuracy.

We further analyzed the effect of bit-flipping on the decod-
ing of HD vectors. The task consists of storing a sequence
of letters in a single hypervector and retrieving a letter from
a specified position in the sequence [33]. A sequence of M
letters can be stored in a hypervector by encoding each letter’s
order with permutation and by superposing (adding together)
the resulting letter vectors into a single trace vector, H. The
elements of the superposition hypervector are made binary by
the majority rule and hence the trace hypervector H is of the
form

H=1[) p"(Xs,) (1)

Due to the properties of addition, the trace hypervector is
similar to each of the added vectors. Hence, each element of
the letter sequence can be decoded from the trace hypervector
by first inverting the permutation that encodes the letter’s
position position m as p~™(H) and then finding the most
similar hypervector amongst the letters stored in the item
memory. The similarity between two hypervectors is measured
by Hamming distance normalized by D, Ap. The majority
function preserves only partial similarity to its constituent
hypervectors. In other words, Hamming distance between the
“unpermuted” hypervector p~™(H) and the original hypervec-
tor X, in position m increases with the length of the letter
sequence. For a sequence of length M, the mean value of
Hamming distance Ap,, between p~"(H) and X, , is given
in [34] as

1 M-1 M
AHM_2_<%(M_1))/2 2
The standard deviation around the mean depends on the
dimensionality, D, and is calculated as

o =v0.25D 3)

We characterize the noise in the trace hypervector by proba-
bility py of flipping a single bit. Noise in the trace hypervector
is evenly distributed among the components and it drives
Hamming distances toward 0.5. The larger the number of
vectors in the trace vector, the further it is from the individual
vectors, and the less are Hamming distances affected by bit-
flipping. In fact, random flipping has no effect on the mean
distance between vectors that are 0.5 apart. The growth of
Hamming distance between p~™(H ) and X, , when the trace
hypervector contains Dpy flipped bits, is given by

Ap, = (1—2Ap,,)py 4)

Thus, the total Hamming distance is:

Ag, = Ag,, +Ap, &)

If Ay, is close to 0.5, the probability of incorrectly decod-
ing the letter in a specified position is high. The probability
of correct decoding p¢, Was derived in [33] and is given by

< Jh (h=(0.5-Ap,)D)? ANTE L
corr — N o2 o — 6
pe= | g (D)) @

where L is the number of letters in the alphabet, and ® is
the cumulative distribution function of the normal distribution.
The accuracy of decoding a single letter from the trace
hypervector, pco-, against the bit-flip rate p; for several
sequence lengths is shown in Figure [6] Note that the curves
derived analytically from (€) match the simulations. Also note
that as the sequence length M increases and Ayy,, approaches
0.5, the effect of flipping bits becomes more gradual. However,
even long sequences of hypervectors (63 symbols) demonstrate
superb accuracy for bit-flip rates up to 0.15. When p; equals
0.5, the trace hypervector becomes unrelated to any of its
constituent vectors, and the accuracy of decoding equals a
random guess, i.e., Peorr = % for any sequence length M.
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F. Energy Efficiency

We use a standard ASIC flow to design dedicated hardware
for the baseline classifier and the HD classifier. We describe
the classifiers in a fully parameterized manner, using RTL
SystemVerilog. We apply identical constraints and flow to
both designs. For the synthesis, we use Synopsys Design
Compiler with TSMC’s 65 nm LP CMOS process. We extract
the switching activity of these classifiers during postsynthesis
simulations in ModelSim using the test sentences. Finally, we
measure their power consumption using Synopsys PrimeTime
at (1.2V, 25°C, TT) corner.

Figure[7] shows the power consumption and area for various
dimensionality of the three main components of the HD
classifier: the item memory, the encoder, and the associative
memory. The area results indicate that the size of the HD
classifier and its components increase almost linearly with the
size of the hypervectors. This is in contrast to conventional
methods where the size of the dominant components such as
multipliers and other complex operators increases polynomi-
ally with the width of the datapaths. Therefore, a HD classifier
is expected to be much smaller and consume far less energy
than comparable conventional methods.

As shown in the Figure, the item and associative memories
together constitute more than two-thirds of the size and power
consumption; only the encoder has a substantial portion of
its resources devoted to combinational logic. This highlights
the fact that the HD classifier is largely a memory-centric
machine. Hence, current trends in memory technology are
a natural fit for HD computing: the hypervectors can be
efficiently stored in dense crossbars with in-memory logic that
can perform the encoder operations. The simulation of average
switching activity per net reveals that the encoder is almost
three times as active as the rest of the design. Therefore, a
further improvement in power consumption can be achieved
by pursuing sparse hypervectors and operations that preserve
sparsity.

We compare the power consumption for trigrams only, since
with n-grams of n > 4, the baseline classifier becomes
increasingly less efficient compared to the HD classifier due
to the exponential growth in the amount of memory required.
With 47% of the energy required by the baseline classifier, the
HD classifier is only 1.2% less accurate: 96.7% versus 97.9%
for the baseline. Although both designs use binary components
and low-cost Hamming distance for similarity measurement,
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the HD classifier achieves higher energy efficiency thanks
to its one-shot computation with highly scalable and local
operations. We should note that this energy saving is achieved
without harnessing the robustness of HD computing demon-
strated in Section [V-El

V. 3D ARCHITECTURE FOR HD COMPUTING

In this section we explore how to translate the properties of
HD computing into a functional and efficient 3D memory-
centric realization, and highlight the challenges. We focus
on non-volatile memory technologies that can be integrated
at high density and require little energy. Such an efficient
realization constrains the underlying technology in several
ways:

1) Tight integration of memory and logic. The proposed HD
computing architecture merges computation and storage into a
single fabric. While this can be accomplished in a traditional
2D process, the increase in cell size would lead to substantial
energy overhead. A 3D approach where logic and memory
are stacked on top of each other leads to a far more efficient
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realization [35], [36]]. In fact, multiple layers of such approach
are envisioned.

2) Non-volatile, multi-level memory. Because the realiza-
tion is memory-dominated and memory accesses are sparse
in time and space, it is essential that memory cells (and
logic) be powered down when not in use. Otherwise leakage
power will dominate the overall power consumption of the
system. This means that the associative memory should be
implemented in non-volatile technology. Observe that memory
reads (classification) are far more frequent than memory writes
(learning), which is consistent with the energy requirements
of these operations in most non-volatile memory technologies.
In addition, data values do not need to be binary. They could
be multi-level [37] continuous or discrete, depending on the
HD framework, the latter being consistent with multi-layer cell
technology.

3) Low-voltage operation. A dominant part of the energy
dissipated in writing to and reading from the memory is due
to the CV? loss in the interconnects. Therefore, the ability
to operate the memory at low voltages while tolerating the
resulting errors is of paramount importance.

Realizing the full potential of HD computing requires a
generic architecture that enables the following: (1) multiple
applications on the same hardware; (2) learning and classifi-
cation/execution using the same algorithm; (3) availability of
all operations that define HD computing; and (4) achievement
of high energy efficiency by exploiting robust algorithms
that tolerate errors from operating at very low SNRs (<10),
on-demand computation with zero-leakage at stand-by, in-
memory processing, and non-volatile state storage, e.g., [38l,
[39], [40], [41]. Ease of programming is another essential
component of the HD architecture, being based on an abstract
model of computing supported by a rich algebra, which in
principle can lead to simple mapping of function to imple-
mentation assuming that the underlying architecture matches
the computational model.

Figure [§| shows an overview of a generic HD computing
architecture with different modules. Note the parallel config-
uration of the encoder and associative memory modules. This
allows an overlay of applications and integration in learning.
The front-end feature extractors are strongly dependent on the
“signals to be learned”, i.e., the application. The inner modules

work on the initially extracted (crude) features in a generic
manner by exploiting the HD computing theory, making the
hardware application-agnostic. We note, however, that the
multi-layer associative memory can be highly beneficial for
the feature extractors by themselves [42].

A. Architectural Design

As can be seen in Figure |8} the generic architecture consists
of three kinds of modules:

1) HD Encoders/Decoders. These modules map the input
data onto high-dimensional vectors, perform operations on
those hypervectors to encode sequences, associations, and pat-
terns, and extract features by performing reverse operations for
a subsequent layer in a deep net. Operations are performed in a
distributed and parallel fashion. The most general approach is
to realize those functions in a memory-rich fabric where the
data streams through layers of operations with the function
of each layer being determined by the local (non-volatile)
memory. To obtain energy efficiency in this massively parallel
architecture, the following requirements must be met: (1) low
SNR operation using either ultra-low-voltage or current-mode
operation; (2) sparse data representations so that only few cells
at each layer are activated per cycle; (3) on-demand operation
with zero stand-by power.

2) Associative Memories. These modules store high-
dimensional vectors and perform the matching of incoming
vectors to stored vectors. Operations in the associative memory
fall under a number of different strategies: simple storage of
patterns; incremental adjustment of memory contents based
on the applied input patterns; simple and distributed match;
auto-association (for noise removal); and more. Data in the
memory can be binary or discrete (with an accuracy level of
4 bits mostly sufficient). Efficient realization of the memory
requires (1) non-volatility to support low stand-by power; (2)
multi-level memory enabled by stacking memory cells similar
to the advanced NAND Flash memories but operating at much
lower voltages — such as potentially offered by RRAM; and
(3) distributed and tightly integrated match computations.

3) Inter-module Interconnect.

The HD computing architecture shown in Figure [§| consists
of an array of encoder/decoder blocks and memory functions.
This partitioning into multiple sub-modules is necessary for a
number of reasons: (1) implementation efficiency — too large
modules come with energy overhead and degradation from
noise; hence partitioning of the memories along the row and
column lines is crucial; (2) hierarchy — typical HD application
will operate on multiple layers of data abstraction (just like
most cognitive systems). Each of these layers operates with
its own data encoding and learned patterns; (3) diversity — a
simple computational engine may combine various types of
input data and data models (just like the brain does). While it
is perfectly reasonable to multiplex those on the same fabric,
most often it is more efficient to distribute the operations in
space and combine the results at the higher abstraction layers.
How to provide an efficient and adaptable interconnect struc-
ture between the modules is a major challenge. The associative
memories used as programmable interconnect matrices may be
a viable strategy.
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B. Resistive Memory Devices

Resistive random access memory presents a compelling
opportunity as it uses materials compatible with Si CMOS
and fabrication temperatures below 400°C. Such resistive
devices can be based on oxygen vacancies (RRAM) [43] that
form conductive filaments or metal ions, creating conductive
bridges through a solid electrolyte or an oxide (CBRAM).
Importantly, RRAM can be integrated in 3D. For example,
in the implementation shown in Figure O(a)] and practically
demonstrated in Figure 0(b)] [43]], the 3D RRAM performed
on par with its planar 2D crosspoint counterparts. Recent
advances [46], [47] point to the possibility that a 128-layer
stacked 3D memory will provide 64Tb on-chip memory for a
5 nm half-pitch technology.

Resistive In-Memory Computing. In-memory computing
operations are natural to the 3D architecture. It has been
shown that any arbitrary multi-stage Boolean expression can
be implemented by programming 3D RRAM cells along a
common pillar [44]. Owing to the unique-common npillar
structure, the logic operations are readily realized on a multi-
layer 3D RRAM, where the state variable for Boolean logic
is the RRAM resistance values. Two computing modes are
available: programming mode and read-out mode. Specific
programming pulse trains are used for basic Boolean oper-
ations, such NAND, NOR, and bit shift. Notably, read-out
mode is employed for frequently used logic where 10'!-cycle
operations for NAND/NOR logic evaluations were measured
experimentally, limited merely by test time (Figure [9(c)).
Additionally, the in-memory computing on 3D RRAM is
dynamically reconfigurable.

The attributes described above suggest that RRAM technol-
ogy is ideal for implementing HD computing. We can build
multi-layer RRAM stacks where the HD computing operations
are carried out by 3D RRAM cells in memory, and where
local access is provided to multibit storage cells. It may be
possible to reduce operating voltages further by exploiting
the fact that HD computing is possible at low SNRs. In
addition, the retention time can be smaller than that required
for a storage class memory (ca. 10 years). Therefore, a small
ON/OFF ratio could be good enough. Since a conductive-
bridge memory (CBRAM) has proven to be programmable at
very low voltages, its shorter retention time could be sufficient

(b) Image of four-layer 3D vertical RRAM [43].
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for working memory (e.g., in the encoding module) of a HD
computer.

VI. ALGORITHM DEVELOPMENT AND APPLICATIONS

Possible applications of high-dimensional computing go
beyond the simple examples discussed above. Those examples
deal with the encoding of frequencies and probabilities of
occurrence into hypervectors, and with the comparison of
the resulting vectors. However, much of ordinary computing
is concerned with the structure of information and with
meaning conveyed by structure. The importance of structure
is obvious in language. For example, the statement “John is
here” becomes a question by changing the order of the first
two words. HD computing is fully able to deal with structure,
thanks to the MAP operations and their underlying algebra.
Language and visual perception offer ample opportunity to
develop algorithms for dealing with structure.

A. Language Understanding

Traditional methods of computational linguistics are of two
basic kind, statistical and structural. Latent Semantic Analysis
(LSA) [14] is an example of the statistical; it computes
semantic vectors for words from word co-occurrence statistics
in large text corpora. Words with similar meaning end up with
similar semantic vectors, but the vectors do not distinguish be-
tween grammatical types. The semantic vectors for “hot” and
“fire” made with LSA are similar but contain no information
about one being an adjective and the other a noun, or a verb
in some contexts. The structural approach, in turn, is based on
a grammar and stumbles on multiple ways to parse a given
string of words. Where a human mind sees only one way to
assemble the words into a meaningful sentence, a computer
cannot decide without a good way to represent meaning.

We expect to get much closer to human performance by
computing with hypervectors. The vectors can encode sim-
ilarity of meaning in the manner of LSA and embed it in
a structured representation by binding with multiplication.
Multiple alternatives can be encoded into a single vector and
the ambiguities resolved based on subsequent information —
again in the form of a vector that supports one alternative
over the others. The operations on hypervectors allow it in a
manner that is transparent and mathematically rigorous.
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B. Visual Scene Understanding

Language in text form provides an easy entry into HD com-
puting because the data consist of discrete symbols (letters and
words) that are readily mapped to high-dimensional vectors.
Other kinds of data such as images and sound waveforms call
for a hybrid approach where HD computing is combined with
deep learning. Deep learning (either supervised or unsuper-
vised) is used to discover features in the data that allow its
mapping into high-dimensional vectors. These vectors are then
combined and manipulated within the HD framework for high-
level reasoning tasks.

We will illustrate the idea with visual scene understanding —
i.e., parsing an image into its constituent parts and representing
relations among them. A simple example of such a task
is shown in Figure Figure shows several digits
in different locations within an image. The task is to take
the image as input and to form a representation of it that
allows questions such as “what is below a 2 and to the
left of a 1?7” to be answered. This is a challenging problem
for traditional neural networks because it involves reasoning
about the relations between objects rather than simply learning
associations between images and labels.

HD computing solves it by representing the scene as a
collection of bindings between “what” and “where.” A window
of attention is focused on different locations in the scene, and
at each location the contents (“what”) are fed through a deep
network to form a hypervector for the visual pattern in the
window. The location is also encoded as a hypervector. Both
vectors are learned so that when they are bound together, and
then superposed with the other “what” and “where” bindings
from the other locations in the image, they result is a scene
vector for the image. The scene vector can then be queried
for objects and their locations. A query is also represented as
a hypervector, and the answer is found by multiplication and
clean-up as shown in Figure [1| For example, “below a 2” is
represented as the high-dimensional embedding of ‘“2” bound
with a vector representing “below”. Multiplied by the scene
vector then yields the activation map shown in Figure
When that is combined with the activation map for “to the
left of a 1” (see Figure [I0(c)), the result (see Figure
specifies the location of the digit seven with high confidence.
One further multiplication (by the scene vector) identifies it
as seven. The system works well in a preliminary study [48]

(c) “To the left of a 17 (d) Combined

and we expect it to generalize to more complex images.

VII. CONCLUSION

Computing with high-dimensional vectors has long been
a part of cognitive science and is at the core of artificial
neural nets, with linear algebra as the underlying math. The
present paper goes a step further. It is based on the notion
that the operations on the vectors form an algebraic structure
resembling a field, and that computing be understood in terms
of the algebra — it becomes a lot like ordinary arithmetic.
That idea was developed fully in Plate’s Holographic Reduced
Representation in the early 1990s [[12]. It has been shown since
then that computing of this kind can be supported by high-D
vectors of different kinds — that high dimensionality is more
important than the nature of the dimensions. In this paper we
have mostly used binary vectors.

The conventional (von Neumann) model of computing is
deterministic, and the engineering and manufacturing effort
to make computer circuits reliable is considerable. It is also
costly in material and energy. By contrast, HD computing uses
randomness constructively and tolerates variation and errors
in many of the components. Several experiments in this paper
make that point.

HD algorithms are often simpler and scale better than
conventional algorithms for the same task. We see that with
semantic vectors and language identification, and in general
in machine learning from large volumes of streaming data.
Furthermore, the HD algorithms are ideal for parallel imple-
mentation, making high throughput possible with systems built
of slow components.

Looking into the future of computing, it is a curious fact
that the nanomaterials and structures studied in technology
laboratories worldwide, have many properties that match the
needs of HD computing. We will have circuits for 10,000-bit
words if our algorithms need them. But how ever successful
HD computing will be, it will not replace conventional com-
puting, merely extend the range of tasks possible for computes.
Obvious candidates include language understanding and image
understanding.
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